
 S206E057 – Fall 2023

Page 1 (10/21/2023)

Copyright ©2023, Chiu-Shui Chan. All Rights Reserved.

Rhino and Python interface

How Python programs could be run in Rhino? And what kind of information is needed by Rhino to generate 3D forms? In this
lecture, methods done by WHILE/FOR loops plus conditional cases are introduced first to serve as the beginning exercise.

First of all, use import command to allow Rhino script functions to be applied in Python. These Rhino script functions are the
available libraries, or a bunch of functions developed as classes. In the following example, import the library of rhinoscriptsyntax
and named it as rs, which is short of rhinoscriptsyntax. Information about the available contents in rhinoscriptsyntax can be
found by hitting F1 key (in PC machines) to bring up the programming reference manual.

import rhinoscriptsyntax as rs
Note: When we call syntax from the rs library, we always put “rs.” in front of the function name that follows. The dot operator
after rs is used to link the functions developed in the class saved in the rhinoscriptsyntax library.

In the following coding example, we will call syntaxes stored in “rs”, use AddPoint to put a point at (0, 0, 0), put two spheres in
Rhino through Python coding. Results of execution would generate a point and two spheres in Rhino. Here, AddPoint requires
coordination of 3 points. AddSphere needs a center point and the radius of the sphere. The required format of AddPoint are
explained in the “Rhino.Python Programmer’s Reference”, which is available by hitting F1 function key. Here is the format.

rhinoscriptsyntax.AddPoint (point, y=None, z=None)

The first of the three parameters after the Addpoint is a required Point3d or a list of 3 values. The following x, y and z
parameters represent the coordinates of x, y and z axis values. For instance, the point at x of 1, y of 2, and z of 3 will be
coded as:
rs.AddPoint((1,2,3)) or rs.AddPoint([2,3,4]), or rs.AddPoint(20,10,10) (The middle method is a safe play)

 Format of AddShpere is:
rs.AddSphere(center_or_plane, radius) #Center_or_Plane could be a list of 3 numbers, Vector3d, or Point3d.

Example #1: Exercise on referencing between Rhino & Python interface.

import rhinoscriptsyntax as rs

rs.AddPoint(0,0,0)
rs.AddPoint([10,10,0])
center = [10,10,0]
radius = 5
rs.AddSphere(center,radius)
rs.AddSphere([20,20,0],10)
rs.AddCircle(center,radius + 10)

User input methods:

import rhinoscriptsyntax as rs

center = rs.GetPoint(“Pick a point”)
radius = rs.GetReal(“Enter a number”)
rs.AddSphere(center,radius)
rs.AddCircle(center,radius)

After codes were written, then click run to see if there is any error. If there is no error, then the points and geometries were
created as Rhino objects and be edited by Rhino functions. In other words, Python codes in Rhino run through its own syntax
window will generate 3D Rhino objects, which are different to the “preview type” of objects created by GH in Rhino.

S206E057 -- Lecture 22, 10/23/2023, Python and Rhino interface

S206E057 – Fall 2023

Page 2 (10/21/2023)

Example #2: Applications of FOR and WHILE loops for object creations

The second example is to use a WHILE and a FOR loop for creating two series of points and spheres. Again, the
rhinoscriptsyntax is imported to the program and abbreviated as rs. Also, math is imported in the second group of coding below
and named as m for the purposes of using mathematic operators of sin for generating a wave pattern.

from rhinoscriptsyntax import*

center = rs.GetPoint(“Pick a point”)
radius = rs.GetReal(“Enter a number”)
rs.AddSphere(center,radius)
rs.AddCircle(center,radius)

In the following example of using FOR loop, the algorithm is to add points to Rhino. The coordinates of x were defined by sinθ,
which is used to create the sine wave along x axis. The degree of θ ranged from 0 to 100, which is the angle represented by the
variable i in this example. 100 is the stopping number, and it is where the calculation stops. These two examples explain the
applications of math library in Python for Rhino 3D form generation. Here, we had not declared or defined any “function” or
making any function calls yet. The program is executed one statement after the other. This style is similar to the style of scripting
that executes codes line-by-line without making function-calls. Details of sin/cos/tan are at: https://www.mathsisfun.com/sine-
cosine-tangent.html.

import rhinoscriptsyntax as rs
from math import* #import math

FOR loop
for i in range (0, 100):
 rs.AddPoint (sin(i), i, i)
WHILE loop,
Inside while, it prints the sine value.
x = 0
while (x < 100):
 print (sin(x))
 rs.AddPoint ([sin(x), x, 0])
 x += 1

Example #3: IF-ELSE condition of Python in Rhino

Here, the FOR loop is executed 20 times from 0 to 19 and stopped at 20. For each number in the FOR loop, it will test to see
whether i is less than 10 or not and draw either a point or a sphere along the X axis. Then it will find even number to draw another
point 3 units to the north and otherwise it draws a sphere with 0.3 radiuses. The way to find even number is by the % function
(modulus), which divides two numbers and return only the remainder to indicate that it is an even number.

import rhinoscriptsyntax as rs
from math import*

for i in range (0, 20):
 if (i < 10):
 rs.AddPoint ([i, 0, 0])
 else:
 rs.AddSphere([i, 0, 0], 0.5)
 if (i % 2 == 0):
 rs.AddPoint ([i, 3, 0])
 else:
 rs.AddSphere([i, 3, 0], 0.3)

Note: for importing functions from library, we could use either “import
rhinoscriptsyntax as rs” or “from rhinoscriptsyntax import* to get all library
contents in the library. If we use from…import*, then we don’t have to add the
file name in front of the call-imported-function names. For instance, the two
scripts on previous page and the one on left will get the same results. But, the
left one will consume a large memory space which might freeze operations. It is
fine to include math library by using the from...import* method in this case, but
we shall use conventional way to import rhinoscriptsyntax for other scripts.

https://www.mathsisfun.com/sine-cosine-tangent.html
https://www.mathsisfun.com/sine-cosine-tangent.html

 S206E057 – Fall 2023

Page 3 (10/21/2023)

Example #4: This example is to divide the number of i by five. When the remainder is 0, then draw a point, otherwise draw
sphere. In this case, a variable of rs.EnableRedraw is used. This function lets Rhino draw final results at the end of
executing codes, instead of drawing the screen one by one while executing each FOR loop to speed up drawing sequences.

import rhinoscriptsyntax as rs
from math import* #import math as m

rs.EnableRedraw (False)
for i in range (0, 20):
 if (i % 2 == 0):
 rs.AddPoint ([i, 0, 0])
 else:
 rs.AddSphere ([i,0,0], 0.5)
 if (i % 5 == 0):
 rs.AddPoint ([i, 3, 0])
 else:
 rs.AddSphere ([i, 3, 0], 0.3)
 rs.AddCylinder ([i, 5, 0], 1, 0.4)
rs.EnableRedraw (True)

Interaction between Python functions and Rhino model:

Python functions used in Rhino are defined the same way as they are defined in Python Interpreter. As long as a function is
defined, it will be executed in Rhino for doing the things that could be done manually. The following is an example explaining
the interaction between Rhino and Python.

An interface function of GetObject is available to interact with Rhino models. It allows users to pick or select objects through
the operation of filters, which determine the type of geometry to catch from the scene. For instance, 0 is set up for all
objects, “1” is for points, “4” is for curves, and “32” is for meshes.

Thus, draw a curve or a circle on the original point in Rhino, run the program, and select the circle / curve, then print the
Rhino’s Object ID of the circle and move it along x and y of 20 units. This example has a function “myFunction” defined to
call myFunction(CurveObject, [20, 20, 0]), the object of CurbeObject is the curve obtained through the GetObject.

Here the MoveObject script function has the format of:
 rs.MoveObject (object_id, translation)

The object ID is the system number created by Rhino right after the GetObject function is executed. The value of the amount
of translation is the list value of [20,20,0].

Example codes of the MoveObject provided in the reference manual will move objects to the exact location. The “end –
start” is the calculation of the movement distance provided for your reference.

S206E057 – Fall 2023

Page 4 (10/21/2023)

import rhinoscriptsyntax as rs

id = rs.GetObject("Select object to move") #id is the object ID.
if id:
 start = rs.GetPoint("Point to move from") #start is the coordination of the selected point.
 if start:
 end = rs.GetPoint("Point to move to") # end is the coordination of the selected point.
 if end:
 translation = end – start #the calculated coordination of the point to move to.
 rs.MoveObject(id, translation)
 print(end - start)

Python Class in Rhino

Python is an object-oriented programming language. Almost everything in Python is an object, with its properties and
methods. A Class is like an object constructor, or a "blueprint" for creating objects. This case explains how coding concept of
class could be implemented from Python. It actually is the same as it runs in Terminal mode outside Rhino.

class myClass:
 def __init__ (self, oneName):
 self.oneName=oneName

 def printName (self):
 print(self.oneName)

 def printAlert(self):
 print("Alert!")

obj1 = myClass("CSC")
obj1.printName()
obj1.printAlert()

obj2 = myClass("Tim")
obj2.printName()

A Python class code runs in Rhino

This example will define two objects (strCO1 and strCO2), and each object will have a line picked by user. The pick function
is done by GetObject script function. Then the program will go through the class of “LnBetCurves” to divide the curves by a
number of divisions into points and connect these points with straight lines. See the attached image.

Note: In this example, there is DivideCurve function applied, which takes
four inputs.

1. Curve-ID, which is the object’s identifier.
2. The number of segments to be divided.
3. Create the division points. If omitted or False, a list of points is not

created.
4. Return points. If omitted or True, an array containing division points

is returned.

In Python, there are input methods of: raw_input (get characters) and input
(get numbers). In Rhinoscriptsyntax, there are around 35 functions for
getting point, object, integers, or meshes from Rhino available – GetPoint,
GetObject, GetInteger, etc. As long as we type rs., available functions will
show up for pick. Please check the reference manual (F1 function key).

 S206E057 – Fall 2023

Page 5 (10/21/2023)

Code example:

import rhinoscriptsyntax as rs

class LnBetCurves:
 def __init__ (self, strCurve01, strCurve02, numofDivs):
 self.strCurve01 = strCurve01
 self.strCurve02 = strCurve02
 self.numofDivs = numofDivs

 def drawLineBetweenCurves(self):
 ptList01 = rs.DivideCurve(self.strCurve01, self.numofDivs, True, True) # First true: create the division points.
 ptList02 = rs.DivideCurve(self.strCurve02, self.numofDivs, True, True) # Second true: return an array of 3D points
 count = 0
 for i in ptList01:
 rs.AddLine (ptList01[count], ptList02[count])
 count += 1
 print ("Everything is OK so far")

strCO1 = rs.GetObject ("pick first curve", 4)
strCO2 = rs.GetObject ("pick second curve", 4)

obj01 = LnBetCurves (strCO1, strCO2, 60)
obj01.drawLineBetweenCurves()

Call class outside of the class environment:

The Python class could be saved to a file and named as LnBetCurvesClass.py. The function of drawLineBetweenCurves
inside the class could be utilized by other files. Here is the class.

import rhinoscriptsyntax as rs

class LnBetCurves:
 def __init__ (self, strCurve01, strCurve02, numofDivs):
 self.strCurve01 = strCurve01
 self.strCurve02 = strCurve02
 self.numofDivs = numofDivs

S206E057 – Fall 2023

Page 6 (10/21/2023)

 def drawLineBetweenCurves(self):
 ptList01 = rs.DivideCurve(self.strCurve01, self.numofDivs, True, True)
 ptList02 = rs.DivideCurve(self.strCurve02, self.numofDivs, True, True)
 print(self.numofDivs)
 count = 0
 for i in ptList01:
 rs.AddLine (ptList01[count], ptList02[count])
 print(ptList01[count])
 count += 1
 print ("Everything is OK, so far so good")

Here is the outside call example that imports the LnBetCurvesClass.py file and utilizes the drawLineBetweenCurves
function.The GetInteger function has been used to get user input of the number of divisions, which has the following format:

rs.GetObject (A_Prompt_Message, Default_number, Minimum_number, Maximum_number)

import rhinoscriptsyntax as rs
from LnBetCurvesClass import*

Curve1 = rs.GetObject("Pick first curve ", 4) #variable represents a curve.
Curve2 = rs.GetObject("Pick second curve ", 4)

NumDivision = rs.GetInteger("How many divisions ", 10, 1, 100)
obj1 = LnBetCurves(Curve1, Curve2, NumDivision) #represents an object of executing the class
obj1.drawLineBetweenCurves()

